SluitenHelpPrint
Switch to English
Cursus: NWI-BM066
NWI-BM066
Computation for Biologists
Cursus informatieRooster
CursusNWI-BM066
Studiepunten (ECTS)3
CategorieMA (Master)
VoertaalEngels
Aangeboden doorRadboud Universiteit; Faculteit der Natuurwetenschappen, Wiskunde en Informatica; BioWetenschappen;
Docenten
Coördinator
dr. S.J. van Heeringen
Overige cursussen docent
Docent
dr. S.J. van Heeringen
Overige cursussen docent
Contactpersoon van de cursus
dr. S.J. van Heeringen
Overige cursussen docent
Collegejaar2016
Periode
KW1  (29-08-2016 t/m 06-11-2016)
Aanvangsblok
KW1
Onderwijsvorm
voltijd
Opmerking-
Inschrijven via OSIRISJa
Inschrijven voor bijvakkersJa
VoorinschrijvingNee
WachtlijstNee
Plaatsingsprocedure-
Cursusdoelen

At the end of this course you can:

  • implement an integrative computational analysis to test a biological hypothesis using high-throughput (epi)genomic and proteomic data;
  • write a simple Python program to read and process big, text-based data files;
  • use descriptive statistics to summarize large and complex biological datasets;
  • use Python in combination with command line tools to perform critical exploratory analysis of high-dimensional data;
  • visualize complex biological data and analysis results at the genomic and network level to understand biological systems.
Inhoud
Technological advances in the fields of genomics and proteomics have accelerated the ease and speed of data collection. High-throughput instruments, such as DNA sequencers and mass spectrometers, generate large amounts of biological measurements. This has brought the goal of understanding gene regulation within a living cell at the systems levels much closer. However, to integrate and analyze these various big data sets, a quantitative approach to biology is needed.

In this course you will learn to apply the Python programming language in combination with the Pandas data analysis framework to analyze (epi)genomic and proteomic data. The course will deal with a complete view of data analysis, from reading and processing raw data files to interpretation and visualization within the biological context.
Onderwerpen
• computational analysis of epigenomic and proteomic data
• programming in Python
• the Python data analysis library: Pandas
• descriptive statistics
• data visualization
Toetsinformatie
The final mark for the course will be based on a practical assignment. This mark for this assignment consists of two parts: a practical coding exercise (70%) and a written report (30%).
Voorkennis
• Knowledge of the principles of genome architecture and gene regulation (NWI-BB064B or Lodish 7th edition chpt 5-7 or equivalent)
• Basic statistics (NWI-MOL028 or equivalent)
• Practical knowledge of Linux and the Bash shell and the ability to use the command-line to manipulate common genomics data files (NWI-BB086 or the on-line edX course “Introduction to Linux” or equivalent).
Literatuur
Lecture slides and hand outs will be provided during the course and via Blackboard.
Werkvormen

• 54 hours computer course
• 12 hours lecture
• 18 hours individual study period
Verplicht materiaal
Handouts
Lecture slides and hand outs will be provided during the course and via Blackboard.
Werkvormen
Computerpracticum
AanwezigheidsplichtJa

Cursus
AanwezigheidsplichtJa

Hoorcollege
AanwezigheidsplichtJa

Zelfstudie

Toetsen
Tentamen
Weging1
GelegenhedenBlok KW1, Blok KW2

SluitenHelpPrint
Switch to English